Adaptive volumetric light and atmospheric scattering

Author:

shihan TanORCID,jianwei Zhang,yi Lin,hong Liu,menglong Yang,wenyi Ge

Abstract

An adaptive sampling-based atmospheric scattering and volumetric light framework for flight simulator (FS) is proposed to enhance the immersion and realism in real-time. The framework comprises epipolar sampling (ES), visible factor culling (VFC), interactive participating media density estimating (IPMDE). The main process of proposed architecture is as follows: the scene is divided into two levels according to the distance from the camera. In the high-level pipeline, the layer close to the camera, more samples, and smaller sampling step size is used to improve image quality. Further, the IPMDE method is designed to enhance realism by achieving interactivity with the participating media and multiple light sources. Further optimization is performed by the lookup table and 3D volumetric textures, by which we can compute the density of participating media and the scattering coefficient in parallel. In the low-level pipeline, when the samples are far away from the camera, its influence on the final output is also reduced, which results in fewer samples and a bigger sampling step size. The improved ES method further reduces the number of samples involved in ray marching using the features of epipolar geometry. It then generates global light effects and shadows of distant terrain. The VFC method uses an acceleration structure to quickly find the lit segments which eliminate samples blocked by obstacles. The experimental results demonstrate our architecture achieves a better sense of reality in real-time and is very suitable for FS.

Funder

2018年度四川省新一代人工智能重大科技专项

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3