Comparison of blue-green solutions for urban flood mitigation: A multi-city large-scale analysis

Author:

Cristiano ElenaORCID,Farris Stefano,Deidda Roberto,Viola Francesco

Abstract

Flooding risk in cities has been recently exacerbated by increased urbanization and climate change, often with catastrophic consequences in terms of casualties and economic losses. Rainwater harvesting systems and green roofs are recognized as being among the most effective blue-green mitigation measures. However, performances of these systems have currently been investigated only at laboratory or very-small local scales. In this work, we assess the potential benefit of the extensive installation of these solutions on all the rooftops of 9 cities, with different climatological and geographical characteristics. Both surface discharge reduction and delay between rainfall and runoff peak generation have been investigated. Green roofs ensure a larger average lag time between rainfall and runoff peaks than rainwater harvesting systems, without significant differences between intensive and extensive structures. On the other hand, the cost-efficiency analysis, considering the entire urban area, shows a higher retention capacity with a lower financial investment for rainwater harvesting rather than for green roofs in most cases. For extreme rainfall events, large-scale installation of rainwater harvesting systems coupled with intensive green roofs over the entire city have shown to be the most efficient solution, with a total discharge reduction that can vary from 5% to 15%, depending on the city characteristics and local climate.

Funder

Regione Autonoma della Sardegna

Fondazione di Sardegna

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference51 articles.

1. Frequency of extreme precipitation increases extensively with event rareness under global warming;G. Myhre;Scientific Reports,2019

2. Causes of large projected increases in hurricane precipitation rates with global warming;M. Liu;npj Climate and Atmospheric Science,2019

3. A Theory of Urban Growth;Black Duncan;Journal of Political Economy,1999

4. Rise of the City;Science,2016

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3