Reactivity of Fe-amended biochar for phosphorus removal and recycling from wastewater

Author:

Strawn Daniel G.ORCID,Crump Alex R.ORCID,Peak Derek,Garcia-Perez Manuel,Möller Gregory

Abstract

Using biochar to remove phosphorus (P) from wastewater has the potential to improve surface water quality and recycle recovered P as a fertilizer. In this research, effects of iron modification on P sorption behavior and molecular characterization on two different biochars and an activated carbon were studied. A biochar produced from cow manure anaerobic digest fibers (AD) pyrolyzed under NH3 gas had the greatest phosphate sorption capacity (2300 mg/kg), followed by the activated carbon (AC) (1500 mg/kg), and then the biochar produced from coniferous forest biomass (BN) (300 mg/kg). Modifying the biochars and AC with 2% iron by mass increased sorption capacities of the BN biochar to 2000 mg/kg and the AC to 2300 mg/kg, but decreased sorption capacity of the AD biochar to 1700 mg/kg. Molecular analysis of the biochars using P K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that calcium phosphate minerals were the predominant species in the unmodified biochar. However, in the Fe-modified biochars, XANES data suggest that P was sorbed as P-Fe-biochar ternary complexes. Phosphorus sorbed on unmodified BN biochar was more available for release (greater than 35% of total P released) than the AD biochar (less than 1%). Iron modification of the BN biochar decreased P release to 3% of its total P content, but in the AD biochar, P release increased from 1% of total P in the unmodified biochar to 3% after Fe modification. Results provide fundamental information needed to advance the use of biochar in wastewater treatment processes and recover it for recycling as a slow-release soil fertilizer.

Funder

U.S. Environmental Protection Agency

U.S. Department of Agriculture

Idaho Agricultural Experiment Station

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3