Waterborne viruses in urban groundwater environments

Author:

Rusiñol MartaORCID

Abstract

The proportion of global population using urban aquifers as drinking water sources increases every year and indeed the groundwater quality is not monitored adequately. Although norovirus has been identified as the first cause of groundwater-related outbreaks, the surveillance of waterborne viruses has been rather neglected. From ageing or disrupted sewer systems, occasional sewer discharges (e.g. combined sewer overflows, storm runoff), to poorly managed reclaimed water infiltration practices, multiple are the pathways that cause groundwater quality deterioration. This study revises the main viral contamination sources and the factors affecting viral contamination of groundwater bodies in terms of transport, inactivation, and survival of the viral particles. It also summarizes the methods used for those reporting the presence of human viruses in urban groundwaters. A total of 36 articles have been included in the method survey spanning a period of 24 years (1999–2022). There is a need of systematic monitoring considering representative set of waterborne pathogens. The evaluation of the presence of human adenovirus seems a useful tool to predict the presence of other waterborne pathogens in groundwater. Large volume sampling methods, but also new passive sampling methodologies applied to groundwater, coupled to target massive sequencing approaches may elucidate the range of pathogens capable of contaminating urban groundwaters for further evaluation of risk.

Publisher

Public Library of Science (PLoS)

Reference103 articles.

1. Mullern K. Groundwater | NGWA Home [Internet]. 2022 [cited 2022 Dec 1]. https://www.ngwa.org/

2. WHO\UNICEF. Progress on household drinking water, sanitation and hygiene 2000–2020: five years into the SDGs [Internet]. Joint Water Supply, & Sanitation Monitoring Programme. 2021. 1–164 p.

3. Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India;HB Wakode;Int Soil Water Conserv Res,2018

4. Viruses in nondisinfected drinking water from municipal wells and community incidence of acute gastrointestinal illness;MA Borchardt;Environ Health Perspect,2012

5. Effects of Climate and Sewer Condition on Virus Transport to Groundwater;MB Gotkowitz;Environ Sci Technol,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3