Irish surface water response to the 2018 drought

Author:

Smith Devin F.ORCID,Lyons W. Berry,Henry Tiernan,Flynn Raymond,Carey Anne E.

Abstract

Intense weather events are projected to increase as a consequence of climate change. The summer 2018 drought in Europe impacted human health, ecosystems, and economic prosperity. Even locations with an abundance of fresh water, like Ireland, faced water restrictions due to depleted supplies. To characterize the effect of the 2018 drought on Irish rivers, we collected surface water samples from rivers across the island at the drought onset and termination. We analyzed samples for stable water isotopes δ18O and δ2H and calculated the fraction of evaporation from river groundwater and precipitation inflow (E/I) of rivers. We extended river δ18O and δ2H analysis to 2020 for rivers in two catchments, Corrib and Shannon, to investigate how Irish river systems respond to high precipitation events, and the role of loughs (lakes) in the system. River δ18O and δ2H values showed progressive depletion from west to east in response to precipitation depletion from airmasses arriving off the Atlantic Ocean. From onset to termination of the 2018 drought, river δ18O and δ2H values were enriched and the calculated E/I value increased for most rivers. D-excess were negatively correlated with E/I value, providing support for E/I calculations. Extended analysis of loughs along the Corrib and Shannon river systems showed that lough Corrib consistently induced isotopic enrichment, while loughs in the Shannon catchment inconsistently caused isotopic enrichment. Both systems exert control over river isotopic composition in hydrologic extremes. Findings promote additional research in hydrologic patterns in response to increasing frequency of floods and droughts.

Funder

Fulbright Association

Directorate for Geosciences

Ohio State University

Publisher

Public Library of Science (PLoS)

Reference78 articles.

1. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press. 2021; 3949.

2. A review of environmental droughts: Increased risk under global warming?;SM Vicente-Serrano;Earth-Science Rev,2020

3. Hydrological drought explained;AF Van Loon;WIREs Water,2015

4. Drought termination: Concept and characterisation;S Parry;Prog Phys Geogr,2016

5. A global assessment of the impact of climate change on water scarcity;SN Gosling;Clim Change,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3