Degradability of organic micropollutants with sonolysis—Quantification of the structural influence through QSPR modelling

Author:

Glienke JudithORCID,Stelter MichaelORCID,Braeutigam PatrickORCID

Abstract

Local and climate-driven challenges combined with an increasing anthropogenic pollution of the water compartment all around the world make a sustainable handling of wastewater imperative. New additional treatment methods are under examination, including cavitation-based advanced oxidation processes. To quantify structural influences on chemical processes, quantitative structure-property relationship (QSPR) modelling can be used, which calculates a correlation between a defined endpoint and structural properties expressed by molecular descriptors. In this study, QSPR modelling has been applied to investigate the structural influence on the degradability of organic micropollutants with high-frequency sonolysis. The dataset of a previous study on 32 phenol derivates was expanded by 60 mostly aromatic compounds, whose kinetic degradation constants were obtained in a standardized experimental setup. QSPR modelling was conducted using the software PaDEL for descriptor calculation and QSARINS for the modelling process using a multiple linear regression approach and genetic algorithm. All five OECD-requirements for applicable QSPR models were respected. The obtained model included 12 model descriptors, was evaluated with numerous statistical quality parameters, and shows good regression abilities as well as robustness and predictability (R2 = 0.8651, CCCtr = 0.9277, Q2loo = 0.8010, R2ext = 0.7836, CCCext = 0.8838, Q2F1 = 0.7697). The interpretation of selected model descriptors showed interesting connections between the model results and the experimental background. A strong influence of the polarity of organic compounds on their degradability with high-frequency sonolysis could been quantified, as more nonpolar molecules are degraded faster. Additionally, the impact of specific fingerprints, including for example substituents with heteroatoms, the number of fused and non-fused aromatic rings as well as the numerical appearance of secondary carbon could be identified as relevant for this cavitation-based treatment method.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3