Pre-existing helminth infection impairs the efficacy of adjuvanted influenza vaccination in mice

Author:

Hartmann Wiebke,Brunn Marie-LuiseORCID,Stetter Nadine,Gabriel Gülsah,Breloer MinkaORCID

Abstract

The world health organization estimates that more than a quarter of the human population is infected with parasitic worms that are called helminths. Many helminths suppress the immune system of their hosts to prolong their survival. This helminth-induced immunosuppression “spills over” to unrelated antigens and can suppress the immune response to vaccination against other pathogens. Indeed, several human studies have reported a negative correlation between helminth infections and responses to vaccinations. Using mice that are infected with the parasitic nematode Litomosoides sigmodontis as a model for chronic human filarial infections, we reported previously that concurrent helminth infection impaired the vaccination-induced protection against the human pathogenic 2009 pandemic H1N1 influenza A virus (2009 pH1N1). Vaccinated, helminth-infected mice produced less neutralizing, influenza-specific antibodies than vaccinated naïve control mice. Consequently helminth-infected and vaccinated mice were not protected against a challenge infection with influenza virus but displayed high virus burden in the lung and a transient weight loss. In the current study we tried to improve the vaccination efficacy using vaccines that are licensed for humans. We either introduced a prime-boost vaccination regimen using the non-adjuvanted anti-influenza vaccine Begripal or employed the adjuvanted influenza vaccine Fluad. Although both strategies elevated the production of influenza-specific antibodies and protected mice from the transient weight loss that is caused by an influenza challenge infection, sterile immunity was not achieved. Helminth-infected vaccinated mice still had high virus burden in the lung while non-helminth-infected vaccinated mice rapidly cleared the virus. In summary we demonstrate that basic improvements of influenza vaccination regimen are not sufficient to confer sterile immunity on the background of helminth-induced immunosuppression, despite amelioration of pathology i.e. weight loss. Our findings highlight the risk of failed vaccinations in helminth-endemic areas, especially in light of the ongoing vaccination campaign to control the COVID-19 pandemic.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3