Generating dynamic gene expression patterns without the need for regulatory circuits

Author:

Shah Sahil B.ORCID,Hill Alexis M.,Wilke Claus O.ORCID,Hockenberry Adam J.ORCID

Abstract

Synthetic biology has successfully advanced our ability to design and implement complex, time-varying genetic circuits to control the expression of recombinant proteins. However, these circuits typically require the production of regulatory genes whose only purpose is to coordinate expression of other genes. When designing very small genetic constructs, such as viral genomes, we may want to avoid introducing such auxiliary gene products while nevertheless encoding complex expression dynamics. To this end, here we demonstrate that varying only the placement and strengths of promoters, terminators, and RNase cleavage sites in a computational model of a bacteriophage genome is sufficient to achieve solutions to a variety of basic gene expression patterns. We discover these genetic solutions by computationally evolving genomes to reproduce desired gene expression time-course data. Our approach shows that non-trivial patterns can be evolved, including patterns where the relative ordering of genes by abundance changes over time. We find that some patterns are easier to evolve than others, and comparable expression patterns can be achieved via different genetic architectures. Our work opens up a novel avenue to genome engineering via fine-tuning the balance of gene expression and gene degradation rates.

Funder

national institutes of health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3