Gene selection using pyramid gravitational search algorithm

Author:

Tahmouresi Amirhossein,Rashedi EsmatORCID,Yaghoobi Mohammad Mehdi,Rezaei Masoud

Abstract

Genetics play a prominent role in the development and progression of malignant neoplasms. Identification of the relevant genes is a high-dimensional data processing problem. Pyramid gravitational search algorithm (PGSA), a hybrid method in which the number of genes is cyclically reduced is proposed to conquer the curse of dimensionality. PGSA consists of two elements, a filter and a wrapper method (inspired by the gravitational search algorithm) which iterates through cycles. The genes selected in each cycle are passed on to the subsequent cycles to further reduce the dimension. PGSA tries to maximize the classification accuracy using the most informative genes while reducing the number of genes. Results are reported on a multi-class microarray gene expression dataset for breast cancer. Several feature selection algorithms have been implemented to have a fair comparison. The PGSA ranked first in terms of accuracy (84.5%) with 73 genes. To check if the selected genes are meaningful in terms of patient’s survival and response to therapy, protein-protein interaction network analysis has been applied on the genes. An interesting pattern was emerged when examining the genetic network. HSP90AA1, PTK2 and SRC genes were amongst the top-rated bottleneck genes, and DNA damage, cell adhesion and migration pathways are highly enriched in the network.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries;H Sung;CA: A Cancer Journal for Clinicians,2021

2. Predictive factors for the effectiveness of neoadjuvant chemotherapy and prognosis in triple-negative breast cancer patients;H Masuda;Cancer Chemotherapy and Pharmacology,2010

3. Prognostic models for breast cancer: a systematic review;MT Phung;BMC Cancer,2019

4. A Comparison of PAM50 Intrinsic Subtyping with Immunohistochemistry and Clinical Prognostic Factors in Tamoxifen-Treated Estrogen Receptor–Positive Breast Cancer;TO Nielsen;Clinical Cancer Research,2010

5. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes;BD Lehmann;The Journal of Pathology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3