Efficient joint noise removal and multi exposure fusion

Author:

Buades Antoni,Lisani Jose LuisORCID,Martorell OnofreORCID

Abstract

Multi-exposure fusion (MEF) is a technique that combines different snapshots of the same scene, captured with different exposure times, into a single image. This combination process (also known as fusion) is performed in such a way that the parts with better exposure of each input image have a stronger influence. Therefore, in the result image all areas are well exposed. In this paper, we propose a new method that performs MEF and noise removal. Rather than denoising each input image individually and then fusing the obtained results, the proposed strategy jointly performs fusion and denoising in the Discrete Cosinus Transform (DCT) domain, which leads to a very efficient algorithm. The method takes advantage of spatio-temporal patch selection and collaborative 3D thresholding. Several experiments show that the obtained results are significantly superior to the existing state of the art.

Funder

Ministerio de Ciencia, Innovación y Universidades

Agencia Estatal de Investigación

European Regional Development Funds

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference78 articles.

1. Exposure Fusion: A Simple and Practical Alternative to High Dynamic Range Photography;T Mertens;Computer Graphics Forum,2009

2. Ghosting-free DCT based multi-exposure image fusion;O Martorell;Signal Processing: Image Communication,2019

3. Pérez P, Gangnet M, Blake A. Poisson image editing. In: ACM Transactions on graphics (TOG). vol. 22. ACM; 2003. p. 313–318.

4. Raskar R, Ilie A, Yu J. Image fusion for context enhancement and video surrealism. In: ACM SIGGRAPH 2005 Courses. ACM; 2005. p. 4.

5. Robust Multi-Exposure Image Fusion: A Structural Patch Decomposition Approach;K Ma;IEEE Trans Image Processing,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3