Study on the effect of front retaining walls on the thermal structure and outflow temperature of reservoirs

Author:

Yang Xiaoqian,Tuo YoucaiORCID,Yang Yanjing,Wang Xin,Deng Yun,Wang Haoyu

Abstract

The front retaining wall (FRW) is an effective facility of selective withdrawal. Previous research has not estimated the effect of FRWs on the thermal regimes of reservoirs and outflow temperature, which are crucial to reservoir ecology. For this purpose, taking the Dongqing Reservoir as a case study, a two-dimensional hydrodynamic CE-QUAL-W2 model was configured for the typical channel-type reservoir in the southwestern Guizhou Province, to better understand the influence of FRWs on the thermal structure and outflow temperature. The simulated data from January to September 2017 showed that FRWs can change the vertical temperature distribution during the stratification period, accelerate the upper warmer water release and thus decrease the strength of thermal stratification. The stratification structure changed from a single thermocline to double thermoclines in August. An FRW resulted in an average 11.8 m increase in the thickness of the hypolimnion and a 1.2°C decrease in the thickness of the thermocline layer. An FRW increased the outflow temperature by 0.4°C and raised the withdrawal elevation by 16 m on average. The longitudinal velocity increased compared with the non-FRW condition, while the maximum velocity position moved up. In addition, FRWs can continuously obtain surface warmer water without manual operation and have low investment and good construction conditions. This study can provide an available selective withdrawal idea for reservoirs with similar hydraulic conditions.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. Modifying dam operations to restore rivers: ecological responses to tennessee river dam mitigation;A. T. Bednarek;Ecological Applications,2005

2. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity;J. D. Olden;Freshwater Biol,2010

3. Henery R., 1999. Heat budgets, thermal structure and dissolved oxygen in Brazilian reservoirs. In: Theoretical Reservoir Ecology and its Applications (eds J. G. Tundishi & M. Straskraba). 125–151.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3