Improved heat coefficients for joint-space metabolic energy expenditure model during level, uphill, and downhill walking

Author:

Cruz Jazmin,Yang JamesORCID

Abstract

A previously developed joint-space metabolic energy expenditure (MEE) model includes subject-specific parameters and was validated using level walking gait data. In this work, we determine how well this joint-space model performs during various walking grades (-8%, 0%, and 8%) at 0.8 m·s ⁻1 and 1.3 m·s ⁻1 using published gait data in the literature. In response to those results, we formulate an optimization problem and solve it through the particle swam method plus fmincon function in MATLAB to identify a new optimal weighting parameter set for each grade that produces more accurate predicted MEE and we compare our new findings with seven other MEE models in the literature. The current study matched the measured MEE the best with the lowest RMSE values for level (0.45 J·kg ⁻1·m ⁻1) and downhill (0.82 J·kg ⁻1·m ⁻1) walking and the third lowest RMSE value for uphill (1.56 J·kg ⁻1·m ⁻1) walking, where another MEE model, Looney et al., had the lowest RMSE for uphill (1.27 J·kg ⁻1·m ⁻1) walking. Bland-Altman plots and three independent-samples t-tests show that there was no statistical significant difference between experimentally measured MEE and estimated MEE during the three walking conditions, meaning that the three new optimal weighting parameter sets can be used with 6 degree of freedom (DOF) lower extremity motion data to better estimate whole body MEE in those scenarios. We believe that this work is a step towards identifying a single robust parameter set that allows for accurate estimation of MEE during any task, with the potential to mitigate a limitation of indirect calorimetry requiring lengthy steady state motion.

Funder

National Science Foundation

Defense Health Agency

Texas Tech University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Mechanical determinants of the minimum energy cost of gradient running in humans;AE Minetti;J Exp Biol,1994

2. Mechanical determinants of gradient walking energetics in man;AE Minetti;J Physiol,1993

3. Positive and negative work performances and their efficiencies in human locomotion.;R Margaria;Int Zeitschrift für Angew Physiol Einschließlich Arbeitsphysiologie [Internet],1968

4. The optimal locomotion on gradients: Walking, running or cycling?;LP Ardigò;Eur J Appl Physiol,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3