Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets

Author:

Ueda DaijuORCID,Yamamoto Akira,Onoda Naoyoshi,Takashima Tsutomu,Noda SatoruORCID,Kashiwagi Shinichiro,Morisaki Tamami,Fukumoto Shinya,Shiba Masatsugu,Morimura Mina,Shimono TaroORCID,Kageyama Ken,Tatekawa HiroyukiORCID,Murai KazukiORCID,Honjo TakashiORCID,Shimazaki Akitoshi,Kabata Daijiro,Miki Yukio

Abstract

Objectives The objective of this study was to develop and validate a state-of-the-art, deep learning (DL)-based model for detecting breast cancers on mammography. Methods Mammograms in a hospital development dataset, a hospital test dataset, and a clinic test dataset were retrospectively collected from January 2006 through December 2017 in Osaka City University Hospital and Medcity21 Clinic. The hospital development dataset and a publicly available digital database for screening mammography (DDSM) dataset were used to train and to validate the RetinaNet, one type of DL-based model, with five-fold cross-validation. The model’s sensitivity and mean false positive indications per image (mFPI) and partial area under the curve (AUC) with 1.0 mFPI for both test datasets were externally assessed with the test datasets. Results The hospital development dataset, hospital test dataset, clinic test dataset, and DDSM development dataset included a total of 3179 images (1448 malignant images), 491 images (225 malignant images), 2821 images (37 malignant images), and 1457 malignant images, respectively. The proposed model detected all cancers with a 0.45–0.47 mFPI and had partial AUCs of 0.93 in both test datasets. Conclusions The DL-based model developed for this study was able to detect all breast cancers with a very low mFPI. Our DL-based model achieved the highest performance to date, which might lead to improved diagnosis for breast cancer.

Funder

Wellness Open Living Labs, LLC

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3