A machine learning-based typing scheme refinement for Listeria monocytogenes core genome multilocus sequence typing with high discriminatory power for common source outbreak tracking

Author:

Liu Yen-YiORCID,Chen Chih-ChiehORCID

Abstract

Background As whole-genome sequencing for pathogen genomes becomes increasingly popular, the typing methods of gene-by-gene comparison, such as core genome multilocus sequence typing (cgMLST) and whole-genome multilocus sequence typing (wgMLST), are being routinely implemented in molecular epidemiology. However, some intrinsic problems remain. For example, genomic sequences with varying read depths, read lengths, and assemblers influence the genome assemblies, introducing error or missing alleles into the generated allelic profiles. These errors and missing alleles might create “specious discrepancy” among closely related isolates, thus making accurate epidemiological interpretation challenging. In addition, the rapid growth of the cgMLST allelic profile database can cause problems related to storage and maintenance as well as long query search times. Methods We attempted to resolve these issues by decreasing the scheme size to reduce the occurrence of error and missing alleles, alleviate the storage burden, and improve the query search time. The challenge in this approach is maintaining the typing resolution when using fewer loci. We achieved this by using a popular artificial intelligence technique, XGBoost, coupled with Shapley additive explanations for feature selection. Finally, 370 loci from the original 1701 cgMLST loci of Listeria monocytogenes were selected. Results Although the size of the final scheme (LmScheme_370) was approximately 80% lower than that of the original cgMLST scheme, its discriminatory power, tested for 35 outbreaks, was concordant with that of the original cgMLST scheme. Although we used L. monocytogenes as a demonstration in this study, the approach can be applied to other schemes and pathogens. Our findings might help elucidate gene-by-gene–based epidemiology.

Funder

ministry of science and technology, taiwan

nsysu-kmu joint research project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3