Automated seizure activity tracking and onset zone localization from scalp EEG using deep neural networks

Author:

Craley JeffORCID,Jouny Christophe,Johnson Emily,Hsu David,Ahmed Raheel,Venkataraman Archana

Abstract

We propose a novel neural network architecture, SZTrack, to detect and track the spatio-temporal propagation of seizure activity in multichannel EEG. SZTrack combines a convolutional neural network encoder operating on individual EEG channels with recurrent neural networks to capture the evolution of seizure activity. Our unique training strategy aggregates individual electrode level predictions for patient-level seizure detection and localization. We evaluate SZTrack on a clinical EEG dataset of 201 seizure recordings from 34 epilepsy patients acquired at the Johns Hopkins Hospital. Our network achieves similar seizure detection performance to state-of-the-art methods and provides valuable localization information that has not previously been demonstrated in the literature. We also show the cross-site generalization capabilities of SZTrack on a dataset of 53 seizure recordings from 14 epilepsy patients acquired at the University of Wisconsin Madison. SZTrack is able to determine the lobe and hemisphere of origin in nearly all of these new patientswithout retraining the network. To our knowledge, SZTrack is the first end-to-end seizure tracking network using scalp EEG.

Funder

national science foundation

Johns Hopkins

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Portability rules detection by Epilepsy Tracking META-Set Analysis;Neuroscience Informatics;2024-09

2. SeizureSight: 2D CNN-LSTM hybrid for EEG-based seizure prediction;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

3. Attention-based deep convolutional neural network for classification of generalized and focal epileptic seizures;Epilepsy & Behavior;2024-06

4. Artificial intelligence in epilepsy phenotyping;Epilepsia;2024-01-10

5. Multi-Modal Electrophysiological Source Imaging With Attention Neural Networks Based on Deep Fusion of EEG and MEG;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3