ACC deaminase producing rhizobacterium Enterobacter cloacae ZNP-4 enhance abiotic stress tolerance in wheat plant

Author:

Singh Rajnish PrakashORCID,Pandey Dev Mani,Jha Prabhat Nath,Ma Ying

Abstract

Plant growth promoting rhizobacterium (PGPR) designated as ZNP-4, isolated from the rhizosphere of Ziziphus nummularia, was identified as Enterobacter cloacae following 16S rRNA sequence analysis. The isolated strain exhibited various plant growth promoting (PGP) traits. The 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activity was evaluated under diverse physiological conditions that could be useful for minimizing the abiotic stress-induced inhibitory effects on wheat plants. The strain showed resistance to salt (NaCl) and metal (ZnSO4) stress. The effect of E. cloacae ZNP-4 on the augmentation of plant growth was studied under salinity stress of 150 mM (T1 treatment) & 200 mM (T2 treatment) NaCl. The inoculation of strain ZNP-4 significantly improved the various growth parameters of wheat plant such as shoot length (41%), root length (31%), fresh weight (28%), dry weight (29%), photosynthetic pigments chlorophyll a (62%) and chlorophyll b (34%). Additionally, the strain was found to be efficient for minimizing the imposed Zn stress in terms of improving plant growth, biomass and photosynthetic pigments in pots containing different levels of metal stress of 150 mg kg-1 (treatment T1) and 250 mg kg-1 (treatment T2). Isolate ZNP-4 also improved the proline content and decreased malondialdehyde (MDA) level under both salinity and metal stress, therefore maintaining the membrane integrity. Furthermore, bacterial inoculation increased the activities of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). The positive effects of PGPR occurred concurrently with the decrease in abiotic stress-induced reactive oxygen species (ROS) molecules such as hydrogen peroxide (H2O2) and superoxide (O2-) contents. Overall, the observed results indicate that use of bacteria with such beneficial traits could be used as bio-fertilizers for many crops growing under stress conditions.

Funder

Department of Biotechnology

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference74 articles.

1. The State of Food and Agriculture.;FAO;Overcoming water challenges in agriculture,2020

2. Soil Salinity and Food Security in India;P Kumar;Front Sustain Food Syst.,2020

3. Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) Staph.;H Asrar;Environ Exp Bot,2017

4. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review.;A Ullah;Environ Exp Bot,2015

5. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China.;ZJ Shen;Ecotoxicol Environ Saf,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3