Synthesis and characterization of novel ssDNA X-aptamers targeting Growth Hormone Releasing Hormone (GHRH)

Author:

Ayhan-Sahin Burcu,Apaydın Zeynep-Elif,Obakan-Yerlikaya Pınar,Arisan Elif-Damla,Coker-Gurkan AjdaORCID

Abstract

Background Growth Hormone Releasing Hormone (GHRH), 44 amino acids containing hypothalamic hormone, retains the biological activity by its first 29 amino acids. GHRH (NH2 1–29) peptide antagonists inhibit the growth of prostate, breast, ovarian, renal, gastric, pancreatic cancer in vitro and in vivo. Aptamers, single-strand RNA, or DNA oligonucleotides are capable of binding to target molecules with high affinity. Our aim in this study is to synthesize and select X-aptamers against both GHRH NH2 (1–29) and GHRH NH2 (1–44) and demonstrate synthesized aptamers’ target binding activity as well as serum stability. Methods and results Aptamers against GHRH NH2 (1–44) and NH2 (1–29) peptides were synthesized, and binding affinity (Kd) of 24 putative X-aptamers was determined by the dot-blot method, co-immunofluorescence staining and, SPR analysis. The serum stability of TKY.T1.08, TKY1.T1.13, TKY.T2.08, TKY.T2.09 X-aptamers was 90–120 h, respectively. The dose-dependent binding of TKY1.T1.13, TKY.T2.08, TKY.T2.09 X-aptamers on GHRHR in MIA PaCa-2 was approved by co-IF assay results. Moreover, SPR analysis indicated the Kd (4.75, 1.21, and 4.0 nM) levels of TKY2.T1.13, TKY.T2.08, TKY.T2.09 putative X-aptamers, respectively. Conclusion Our results illustrate the synthesis of 24 putative X-aptamers against both GHRH NH2 (1–44) and NH2 (1–29) peptides and TKY1.T1.13, TKY.T2.08, TKY.T2.09 X-aptamers have high serum stability, high target binding potential with low Kd levels.

Funder

TUBİTAK

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference38 articles.

1. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;F Bray;CA Cancer J Clin,2018

2. The Development and Causes of Cancer—The Cell—NCBI Bookshelf [Internet]. [cited 2020 Mar 26]. https://www.ncbi.nlm.nih.gov/books/NBK9963/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3