Mechanical properties of emulsified recycled cement-stabilized macadam based on step-by-step filling gradation design

Author:

Liu ZhijunORCID,Li Chenhui,Sun Tao,Wang Liangliang

Abstract

Since the recycling of waste original cement-stabilized macadam (OCSM) base has important environmental and economic significance, the addition of emulsified asphalt to OCSM to form emulsified recycled OCSM (ER-OCSM) can improve the flexibility of recycled mixtures. However, the influence of emulsified asphalt on the mechanical performance of such mixtures remains to be investigated. This study presents a gradation design and ER-OCSM established using the step-by-step filling method and investigated the mechanical properties of the ER-OCSM mixture. The apparent characteristics, crushing value and needle-like particle content of the OCSM milling material were tested. Based on step-by-step filling theory, the appropriate test method to achieve a uniform and dense state according to the characteristics of different aggregates was selected, and the dense skeleton gradation design method for recycled cement macadam was obtained. The mechanical properties of the ER-OCSM were analyzed by performing indoor physical laboratory tests. The natural gradation of the OCSM milling material exceeded the gradation range recommended in the Technical Guide for the Promotion of Science and Technology of the Construction Project of the Main Highway in Jiangsu Province (Trial), but the designed gradations were basically within the range. At the same age and temperature, the flexural strength and dynamic elastic modulus of the ER-OCSM decreased gradually with an increase in the emulsified asphalt content. Because ER-OCSM had temperature-sensitive characteristics, the adhesiveness of the asphalt between particles in the mixture decreased with increasing temperature, which was manifested as the unconfined compressive strength, flexural tensile strength and dynamic elastic modulus decreasing with an increase in temperature (the decrease was slight within 5–25°C but noticeable within 25–60°C). Furthermore, a higher emulsified asphalt content caused a more noticeable decrease. The flexural strength of the tested ER-OCSM showed noticeable correlations with the splitting strength, unconfined compressive strength and dynamic elastic modulus. The proper addition of emulsified asphalt can reduce the rigidity of ER-OCSM. However, the emulsified asphalt content should be strictly controlled; otherwise, the mechanical properties of the material will decrease greatly, adversely impacting the comprehensive road use performance.

Funder

Jiangsu Traffic Science Research Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

1. Comparisons of natural and enhanced asphalt mixtures containing recycled cement-stabilized macadam as aggregates;LY You;Journal of Materials in Civil Engineering,2020

2. Rashidi M, Ashtiani RS. Performance Evaluation of the Cement Stabilized Reclaimed Materials for Use in Pavement Foundations. In: International Conference on Transportation and Development 2018. http://dx.doi.org/10.1061/9780784481554.015.

3. Grading Design of Recycled Aggregate Cement-Stabilized Gravel Based on Rotary Compaction;X Cai;Journal of Highway and Transportation Research and Development,2018

4. Strength and Microstructural Study of Recycled Asphalt Pavement: Slag Geopolymer as a Pavement Base Material;M Hoy;J Mater Civil Eng,2018

5. Predicting travel times of bus transit in Washington, D.C using artificial neural networks;S Arhin;Civil Engineering Journal-Tehran,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3