DeBoNet: A deep bone suppression model ensemble to improve disease detection in chest radiographs

Author:

Rajaraman SivaramakrishnanORCID,Cohen Gregg,Spear Lillian,Folio Les,Antani SameerORCID

Abstract

Automatic detection of some pulmonary abnormalities using chest X-rays may be impacted adversely due to obscuring by bony structures like the ribs and the clavicles. Automated bone suppression methods would increase soft tissue visibility and enhance automated disease detection. We evaluate this hypothesis using a custom ensemble of convolutional neural network models, which we call DeBoNet, that suppresses bones in frontal CXRs. First, we train and evaluate variants of U-Nets, Feature Pyramid Networks, and other proposed custom models using a private collection of CXR images and their bone-suppressed counterparts. The DeBoNet, constructed using the top-3 performing models, outperformed the individual models in terms of peak signal-to-noise ratio (PSNR) (36.7977±1.6207), multi-scale structural similarity index measure (MS-SSIM) (0.9848±0.0073), and other metrics. Next, the best-performing bone-suppression model is applied to CXR images that are pooled from several sources, showing no abnormality and other findings consistent with COVID-19. The impact of bone suppression is demonstrated by evaluating the gain in performance in detecting pulmonary abnormality consistent with COVID-19 disease. We observe that the model trained on bone-suppressed CXRs (MCC: 0.9645, 95% confidence interval (0.9510, 0.9780)) significantly outperformed (p < 0.05) the model trained on non-bone-suppressed images (MCC: 0.7961, 95% confidence interval (0.7667, 0.8255)) in detecting findings consistent with COVID-19 indicating benefits derived from automatic bone suppression on disease classification. The code is available at https://github.com/sivaramakrishnan-rajaraman/Bone-Suppresion-Ensemble.

Funder

U. S. National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Automated chest x-ray screening: Can lung region symmetry help detect pulmonary abnormalities?;KC Santosh;IEEE Trans Med Imaging,2018

2. Missed non-small cell lung cancer: Radiographic findings of potentially resectable lesions evident only in retrospect;PK Shah;Radiology,2003

3. Comparison of dual energy subtraction chest radiography and traditional chest X-rays in the detection of pulmonary nodules;F Manji;Quant Imaging Med Surg,2016

4. Dual-energy subtraction chest radiography: What to look for Beyond calcified nodules;JE Kuhlman;Radiographics,2006

5. Improved detection of subtle lung nodules by use of chest radiographs with bone suppression imaging: Receiver operating characteristic analysis with and without localization;F Li;Am J Roentgenol,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3