Genetic identification of bat species for pathogen surveillance across France

Author:

Arnaout Youssef,Djelouadji Zouheira,Robardet EmmanuelleORCID,Cappelle JulienORCID,Cliquet Florence,Touzalin Frédéric,Jimenez Giacomo,Hurstel Suzel,Borel Christophe,Picard-Meyer EvelyneORCID

Abstract

With more than 1400 chiropteran species identified to date, bats comprise one-fifth of all mammalian species worldwide. Many studies have associated viral zoonoses with 45 different species of bats in the EU, which cluster within 5 families of bats. For example, the Serotine bats are infected by European Bat 1 Lyssavirus throughout Europe while Myotis bats are shown infected by coronavirus, herpesvirus and paramyxovirus. Correct host species identification is important to increase our knowledge of the ecology and evolutionary pattern of bat viruses in the EU. Bat species identification is commonly determined using morphological keys. Morphological determination of bat species from bat carcasses can be limited in some cases, due to the state of decomposition or nearly indistinguishable morphological features in juvenile bats and can lead to misidentifications. The overall objective of our study was to identify insectivorous bat species using molecular biology tools with the amplification of the partial cytochrome b gene of mitochondrial DNA. Two types of samples were tested in this study, bat wing punches and bat faeces. A total of 163 bat wing punches representing 22 species, and 31 faecal pellets representing 7 species were included in the study. From the 163 bat wing punches tested, a total of 159 were genetically identified from amplification of the partial cyt b gene. All 31 faecal pellets were genetically identified based on the cyt b gene. A comparison between morphological and genetic determination showed 21 misidentifications from the 163 wing punches, representing ~12.5% of misidentifications of morphological determination compared with the genetic method, across 11 species. In addition, genetic determination allowed the identification of 24 out of 25 morphologically non-determined bat samples. Our findings demonstrate the importance of a genetic approach as an efficient and reliable method to identify bat species precisely.

Funder

French National Agency for Food, Environmental and Occupational Health & Safety

VetAgro Sup laboratory for Leptospira

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3