SAR ship target detection method based on CNN structure with wavelet and attention mechanism

Author:

Huang ShiqiORCID,Pu Xuewen,Zhan Xinke,Zhang Yucheng,Dong Ziqi,Huang Jianshe

Abstract

Ship target detection in synthetic aperture radar (SAR) images is an important application field. Due to the existence of sea clutter, especially the SAR imaging in huge wave area, SAR images contain a lot of complex noise, which brings great challenges to the effective detection of ship targets in SAR images. Although the deep semantic segmentation network has been widely used in the detection of ship targets in recent years, the global information of the image cannot be fully utilized. To solve this problem, a new convolutional neural network (CNN) method based on wavelet and attention mechanism was proposed in this paper, called the WA-CNN algorithm. The new method uses the U-Net structure to construct the network, which not only effectively reduces the depth of the network structure, but also significantly improves the complexity of the network. The basic network of WA-CNN algorithm consists of encoder and decoder. Dual tree complex wavelet transform (DTCWT) is introduced into the pooling layer of the encoder to smooth the speckle noise in SAR images, which is beneficial to preserve the contour structure and detail information of the target in the feature image. The attention mechanism theory is added into the decoder to obtain the global information of the ship target. Two public SAR image datasets were used to verify the proposed method, and good experimental results were obtained. This shows that the method proposed in this article is effective and feasible.

Funder

Natural Science Key Basic Research Plan in Shaanxi Province of China

Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3