Abstract
Damage from infestations of Lymantria dispar L. in oak-dominated stands and southern pine beetle (Dendroctonus frontalis Zimmermann) in pine-dominated stands have far exceeded impacts of other disturbances in forests of the mid-Atlantic Coastal Plain over the last two decades. We used forest census data collected in undisturbed and insect-impacted stands combined with eddy covariance measurements made pre- and post-disturbance in oak-, mixed and pine-dominated stands to quantify how these infestations altered forest composition, structure and carbon dynamics in the Pinelands National Reserve of southern New Jersey. In oak-dominated stands, multi-year defoliation during L. dispar infestations resulted in > 40% mortality of oak trees and the release of pine saplings and understory vegetation, while tree mortality was minimal in mixed and pine-dominated stands. In pine-dominated stands, southern pine beetle infestations resulted in > 85% mortality of pine trees but had minimal effect on oaks in upland stands or other hardwoods in lowland stands, and only rarely infested pines in hardwood-dominated stands. Because insect-driven disturbances are both delaying and accelerating succession in stands dominated by a single genus but having less effect in mixed-composition stands, long-term disturbance dynamics are favoring the formation and persistence of uneven age oak-pine mixedwood stands. Changes in forest composition may have little impact on forest productivity and evapotranspiration; although seasonal patterns differ, with highest daily rates of net ecosystem production (NEP) during the growing season occurring in an oak-dominated stand and lowest in a pine-dominated stand, integrated annual rates of NEP are similar among oak-, mixed and pine-dominated stands. Our research documents the formation of mixedwood stands as a consequence of insect infestations in the mid-Atlantic region and suggests that managing for mixedwood stands could reduce damage to forest products and provide greater continuity in ecosystem functioning.
Funder
Northern Research Station
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献