PyMiner: A method for metabolic pathway design based on the uniform similarity of substrate-product pairs and conditional search

Author:

Song Xinfang,Dong Mingyu,Liu MinORCID

Abstract

Metabolic pathway design is an essential step in the course of constructing an efficient microbial cell factory to produce high value-added chemicals. Meanwhile, the computational design of biologically meaningful metabolic pathways has been attracting much attention to produce natural and non-natural products. However, there has been a lack of effective methods to perform metabolic network reduction automatically. In addition, comprehensive evaluation indexes for metabolic pathway are still relatively scarce. Here, we define a novel uniform similarity to calculate the main substrate-product pairs of known biochemical reactions, and develop further an efficient metabolic pathway design tool named PyMiner. As a result, the redundant information of general metabolic network (GMN) is eliminated, and the number of substrate-product pairs is shown to decrease by 81.62% on average. Considering that the nodes in the extracted metabolic network (EMN) constructed in this work is large in scale but imbalanced in distribution, we establish a conditional search strategy (CSS) that cuts search time in 90.6% cases. Compared with state-of-the-art methods, PyMiner shows obvious advantages and demonstrates equivalent or better performance on 95% cases of experimentally verified pathways. Consequently, PyMiner is a practical and effective tool for metabolic pathway design.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single-Cell Informatics for Tumor Microenvironment and Immunotherapy;International Journal of Molecular Sciences;2024-04-19

2. Deep learning for metabolic pathway design;Metabolic Engineering;2023-11

3. Sustainable metabolic engineering requires a perfect trifecta;Current Opinion in Biotechnology;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3