Identification of C-T novel polymorphism in 3rd exon of OsSPL14 gene governing seed sequence in rice

Author:

Din Muhammad Salah ud,Wang Xiukang,Alamery Salman,Fiaz SajidORCID,Rasheed Haroon,Khan Muhammad Abid,Khan Shahid Ullah,Saeed Sumbul,Ali Niaz,Marwat Kalim Ullah,Attia Kotb,Kimiko Itoh,Wani Shabir HussainORCID

Abstract

Recently food shortage has become the major flagging scenario around the globe. To resolve this challenge, there is dire need to significantly increase crop productivity per unit area. In the present study, 24 genotypes of rice were grown in pots to assess their tillering number, number of primary and secondary branches per panicle, number of grains per panicle, number of grains per plant, and grain yield, respectively. In addition, the potential function of miR156 was analyzed, regulating seed sequence in rice. Furthermore, OsSPL14 gene for miR156 was sequenced to identify additional mutations within studied region. The results demonstrated Bas-370 and L-77 showed highest and lowest tillers, respectively. Bas-370, Rachna basmati, Bas-2000, and Kashmir Basmati showed high panicle branches whereas, L-77, L-46, Dilrosh, L-48, and L-20 displayed lowest panicle branches. Bas-370 and four other studied accessions contained C allele whereas, L-77 and 18 other investigated accessions had heterozygous (C and T) alleles in their promoter region. C-T allelic mutation was found in 3rd exon of the OsSPL14 gene. The sequence analysis of 12 accessions revealed a novel mutation (C-T) present ~2bp upstream and substitution of C-A allele. However, no significant correlation for novel mutation was found for tillering and panicle branches in studied rice accessions. Taken together present results suggested novel insight into the binding of miR156 to detected mutation found in 3rd exon of the OsSPL14 gene. Nevertheless, L-77, L-46, Dilrosh, L-48, and L-20 could be used as potential breeding resource for improving panicle architecture contributing yield improvement of rice crop.

Funder

Natural Science Foundation of Shaanxi Provincial Department of Education

Young Scientists Fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference28 articles.

1. Breeding high-yield superior quality hybrid super rice by rational design;Q. Qian;National Science Review,2016

2. Tillering and panicle branching genes in rice;W. hong Liang;Gene,2014

3. Fine mapping of a gene for low-tiller number, Ltn, in japonica rice (Oryza sativa L.) variety Aikawa 1;D. Fujita;Theor. Appl. Genet,2010

4. Analysis of technical efficiency of rice production in Punjab (Pakistan);S. K. Abedullah;Pak. Econ. Soc. Rev,2007

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3