Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (Beta vulgaris L.)

Author:

Islam Md JahirulORCID,Uddin Md JalalORCID,Hossain Mohammad AnwarORCID,Henry RobertORCID,Begum Mst. Kohinoor,Sohel Md. Abu Taher,Mou Masuma Akter,Ahn JuheeORCID,Cheong Eun Ju,Lim Young-Seok

Abstract

Drought tolerance is a complex trait controlled by many metabolic pathways and genes and identifying a solution to increase the resilience of plants to drought stress is one of the grand challenges in plant biology. This study provided compelling evidence of increased drought stress tolerance in two sugar beet genotypes when treated with exogenous putrescine (Put) at the seedling stage. Morpho-physiological and biochemical traits and gene expression were assessed in thirty-day-old sugar beet seedlings subjected to drought stress with or without Put (0.3, 0.6, and 0.9 mM) application. Sugar beet plants exposed to drought stress exhibited a significant decline in growth and development as evidenced by root and shoot growth characteristics, photosynthetic pigments, antioxidant enzyme activities, and gene expression. Drought stress resulted in a sharp increase in hydrogen peroxide (H2O2) (89.4 and 118% in SBT-010 and BSRI Sugar beet 2, respectively) and malondialdehyde (MDA) (35.6 and 27.1% in SBT-010 and BSRI Sugar beet 2, respectively). These changes were strongly linked to growth retardation as evidenced by principal component analysis (PCA) and heatmap clustering. Importantly, Put-sprayed plants suffered from less oxidative stress as indicated by lower H2O2 and MDA accumulation. They better regulated the physiological processes supporting growth, dry matter accumulation, photosynthetic pigmentation and gas exchange, relative water content; modulated biochemical changes including proline, total soluble carbohydrate, total soluble sugar, and ascorbic acid; and enhanced the activities of antioxidant enzymes and gene expression. PCA results strongly suggested that Put conferred drought tolerance mostly by enhancing antioxidant enzymes activities that regulated homeostasis of reactive oxygen species. These findings collectively provide an important illustration of the use of Put in modulating drought tolerance in sugar beet plants.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3