Abstract
This study sought to determine whether lower extremity muscle size, power and strength could be a determinant of whole-body maximal aerobic performance in athletes. 20 male and 19 female young athletes (18 ± 4 years) from various sporting disciplines participated in this study. All athletes performed a continuous ramp-incremental cycling to exhaustion for the determination of peak oxygen uptake (V˙O2peak: the highest V˙O2 over a 15-s period) and maximal power output (MPO: power output corresponding to V˙O2peak). Axial scanning of the right leg was performed with magnetic resonance imaging, and anatomical cross-sectional areas (CSAs) of quadriceps femoris (QF) and hamstring muscles at 50% of thigh length were measured. Moreover, bilateral leg extension power and unilateral isometric knee extension and flexion torque were determined. All variables were normalised to body mass, and six independent variables (V˙O2peak, CSAs of thigh muscles, leg extension power and knee extension and flexion torque) were entered into a forward stepwise multiple regression model with MPO being dependent variable for males and females separately. In the males, V˙O2peak was chosen as the single predictor of MPO explaining 78% of the variance. In the females, MPO was attributed to, in the order of importance, V˙O2peak (p < 0.001) and the CSA of QF (p = 0.011) accounting for 84% of the variance. This study suggests that while oxygen transport capacity is the main determinant of MPO regardless of sex, thigh muscle size also has a role in whole-body maximal aerobic performance in female athletes.
Funder
Go for the World! Saitama Young Athletes Development Program, Saitama prefecture
Human Performance Laboratory, Comprehensive Research Organization, Waseda University
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献