Demographic and life history traits explain patterns in species vulnerability to extinction

Author:

Hernández-Yáñez Haydée,Kim Su Yeon,Che-Castaldo Judy P.ORCID

Abstract

As ecosystems face disruption of community dynamics and habitat loss, the idea of determining ahead of time which species can become extinct is an important subject in conservation biology. A species’ vulnerability to extinction is dependent upon both intrinsic (life-history strategies, genetics) and extrinsic factors (environment, anthropogenic threats). Studies linking intrinsic traits to extinction risk have shown variable results, and to our knowledge, there has not been a systematic analysis looking at how demographic patterns in stage-specific survival and reproductive rates correlate to extinction risk. We used matrix projection models from the COMPADRE and COMADRE matrix databases and IUCN Red List status as our proxy of extinction risk to investigate if some demographic patterns are more vulnerable to extinction than others. We obtained data on demographic rates, phylogeny, and IUCN status for 159 species of herbaceous plants, trees, mammals, and birds. We calculated 14 demographic metrics related to different aspects of life history and elasticity values and analyzed whether they differ based on IUCN categories using conditional random forest analysis and phylogenetic generalized least square regressions. We mapped all species within the database, both with IUCN assessment and without, and overlaid them with biodiversity hotspots to investigate if there is bias within the assessed species and how many of the non-assessed species could use the demographic information recorded in COMPADRE and COMADRE for future IUCN assessments. We found that herbaceous perennials are more vulnerable when they mature early and have high juvenile survival rates; birds are more vulnerable with high progressive growth and reproduction; mammals are more vulnerable when they have longer generation times. These patterns may be used to assess relative vulnerability across species when lacking abundance or trend data.

Funder

Directorate for Biological Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3