Aerobes and phototrophs as microbial organic fertilizers: Exploring mineralization, fertilization and plant protection features

Author:

Wambacq Eva,Alloul AbbasORCID,Grunert Oliver,Carrette Jasper,Vermeir Pieter,Spanoghe Janne,Sakarika MyrsiniORCID,Vlaeminck Siegfried E.,Haesaert Geert

Abstract

Organic fertilizers and especially microbial biomass, also known as microbial fertilizer, can enable a paradigm shift to the conventional fertilizer-to-food chain, particularly when produced on secondary resources. Microbial fertilizers are already common practice (e.g. Bloom® and Synagro); yet microbial fertilizer blends to align the nutrient release profile to the plant’s needs are, thus far, unexplored. Moreover, most research only focuses on direct fertilization effects without considering added value properties, such as disease prevention. This study has explored three promising types of microbial fertilizers, namely dried biomass from a consortium of aerobic heterotrophic bacteria, a microalga (Arthrospira platensis) and a purple non-sulfur bacterium (Rhodobacter sphaeroides). Mineralization and nitrification experiments showed that the nitrogen mineralization profile can be tuned to the plant’s needs by blending microbial fertilizers, without having toxic ammonium peaks. In a pot trial with perennial ryegrass (Lolium perenne L.), the performance of microbial fertilizers was similar to the reference organic fertilizer, with cumulative dry matter yields of 5.6–6.7 g per pot. This was confirmed in a pot trial with tomato (Solanum lycopersicum L.), showing an average total plant length of 90–99 cm after a growing period of 62 days for the reference organic fertilizer and the microbial fertilizers. Moreover, tomato plants artificially infected with powdery mildew (Oidium neolycopersici), a devastating disease for the horticultural industry, showed reduced disease symptoms when A. platensis was present in the growing medium. These findings strengthen the application potential of this novel class of organic fertilizers in the bioeconomy, with a promising match between nutrient mineralization and plant requirements as well as added value in crop protection.

Funder

Horizon 2020 Framework Programme

Universiteit Antwerpen

Fonds Wetenschappelijk Onderzoek

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference52 articles.

1. Agriculture Production & International Trade and Market Intelligence Services. Executive Summary Fertilizer Outlook 2019–2023. 87th IFA Annual Conference; Montreal2019.

2. FAO. World fertilizer trends and outlook to 2022. Rome; 2019.

3. Microbes and the next nitrogen revolution;I Pikaar;Environmental Science and Technology,2017

4. Wastewater as a Source of Energy, Nutrients, and Service Water

5. The story of phosphorus: Global food security and food for thought;D Cordell;Global Environmental Change-Human and Policy Dimensions,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3