Improved detection of SBDS gene mutation by a new method of next-generation sequencing analysis based on the Chinese mutation spectrum

Author:

Wu Dong,Zhang Li,Qiang Yuzhen,Wang Kaiyu

Abstract

Next-generation sequencing (NGS) is a useful molecular diagnostic tool for genetic diseases. However, due to the presence of highly homologous pseudogenes, it is challenging to use short-read NGS for analyzing mutations of the Shwachman-Bodian-Diamond syndrome (SBDS) gene. The SBDS mutation spectrum was analyzed in the Chinese population, which revealed that SBDS variants were primarily from sequence exchange between SBDS and its pseudogene at the base-pair level, predominantly in the coding region and splice junction of exon two. The c.258+2T>C and c.185_184TA>GT variants were the two most common pathogenic SBDS variants in the Chinese population, resulting in a total carrier frequency of 1.19%. When analyzing pathogenic variants in the SBDS gene from the NGS data, the misalignment was identified as a common issue, and there were different probabilities of misalignment for different pathogenic variants. Here, we present a novel mathematical method for identifying pathogenic variants in the SBDS gene from the NGS data, which utilizes read-depth of the paralogous sequence variant (PSV) loci of SBDS and its pseudogene. Combined with PCR and STR orthogonal experiments, SBDS gene mutation analysis results were improved in 40% of clinical samples, and various types of mutations such as homozygous, compound heterozygous, and uniparental diploid were explored. The findings effectively reduce the impact of misalignment in NGS-based SBDS mutation analysis and are helpful for the clinical diagnosis of SBDS-related diseases, the research into population variation, and the carrier screening.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3