Testing candidate genes linked to corolla shape variation of a pollinator shift in Rhytidophyllum (Gesneriaceae)

Author:

Poulin Valérie,Amesefe Delase,Gonzalez Emmanuel,Alexandre Hermine,Joly SimonORCID

Abstract

Floral adaptations to specific pollinators like corolla shape variation often result in reproductive isolation and thus speciation. But despite their ecological importance, the genetic bases of corolla shape transitions are still poorly understood, especially outside model species. Hence, our goal was to identify candidate genes potentially involved in corolla shape variation between two closely related species of the Rhytidophyllum genus (Gesneriaceae family) from the Antilles with contrasting pollination strategies. Rhytidophyllum rupincola has a tubular corolla and is strictly pollinated by hummingbirds, whereas R. auriculatum has more open flowers and is pollinated by hummingbirds, bats, and insects. We surveyed the literature and used a comparative transcriptome sequence analysis of synonymous and non-synonymous nucleotide substitutions to obtain a list of genes that could explain floral variation between R. auriculatum and R. rupincola. We then tested their association with corolla shape variation using QTL mapping in a F2 hybrid population. Out of 28 genes tested, three were found to be good candidates because of a strong association with corolla shape: RADIALIS, GLOBOSA, and JAGGED. Although the role of these genes in Rhytidophyllum corolla shape variation remains to be confirmed, these findings are a first step towards identifying the genes that have been under selection by pollinators and thus involved in reproductive isolation and speciation in this genus.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference109 articles.

1. Pollinator-mediated evolution of floral signals;FP Schiestl;Trends Ecol Evol,2013

2. Pollination Syndromes and Floral Specialization;CB Fenster;Annu Rev Ecol Evol Syst,2004

3. Phylogenetic evidence for pollinator-driven diversification of angiosperms;T van der Niet;Trends Ecol Evol,2012

4. Modularity and evolution of flower shape: the role of efficiency, development, and spandrels in Erica;D Reich;bioRxiv,2019

5. Evolution of reproductive isolation in plants;A Widmer;Heredity,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3