Effects of low-light stress on aquacultural water quality and disease resistance in Nile tilapia

Author:

Qu BingliangORCID,Zhao Hui,Chen Ying,Yu Xiangyong

Abstract

Light intensity has an important environmental influence on the quality and yield of aquatic products. It is essential to understand the effects of light intensity on water quality and fish metabolism before large-scale aquaculture is implemented. In this study, two low-intensity light levels, 0 lx and 100 lx, were used to stress Nile tilapia (Oreochromis niloticus), with a natural light level (500 lx) used as control. The pH, dissolved oxygen and ammonia contents were significantly lower in the water used in the 0 lx and 100 lx groups than in controls, while the levels of nitrite and total phosphorus were apparently higher. Moreover, the numbers of heterotrophic bacteria, Vibrio and total coliforms in aquaculture water were 157.1%, 314.2% and 502.4% higher, respectively, after 0 lx light stress for 15 days. The survival rate of Nile tilapia decreased significantly to 90.6% under 0 lx light on the 15th day. Of the immune-related genes, the expressions of IFN-γ, IL-12 and IL-4 were 390.3%, 757.8% and 387.5% higher under 0 lx light and 303.3%, 471.2% and 289.7% higher under 100 lx light, respectively. These results indicate that low-intensity light changes the physicochemical parameters of aquaculture water and increases the number of bacteria it hosts while decreasing the survival rate and increasing the disease resistance of Nile tilapia.

Funder

National Key R&D Program of China

Natural Science Foundation of Guangdong Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Stimulation of non-specific immunity, gene expression, and disease resistance in Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), by the methanolic extract of the marine macroalga, Caulerpa scalpelliformis;O Yengkhom;Veterinary World,2019

2. Water Flow and Light Availability Influence on Intracellular Geosmin Production in River Biofilms;C Espinosa;Frontiers in Microbiology,2019

3. Elimination of disinfection byproduct formation potential in reclaimed water during solar light irradiation;QY Wu;Water Research,2016

4. Effects of Illumination Intensity and Initial Feeding on Survival Rate of Larvae of Epinephela malabaricus;K Chen;Modern Fisheries Information,2011

5. Multifactorial analyses revealed optimal aquaculture modalities improving husbandry fitness without clear effect on stress and immune status of pikeperch Sander lucioperca;S Baekelandt;General and Comparative Endocrinology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3