Multisensory temporal binding induces an illusory gap/overlap that reduces the expected audiovisual interactions on saccades but not manual responses

Author:

Vidal ManuelORCID,Vitu Françoise

Abstract

Throughout the day, humans react to multisensory events conveying both visual and auditory signals by rapidly reorienting their gaze. Several studies showed that sounds can impact the latency of visually guided saccades depending on when and where they are delivered. We found that unlocalized beeps delivered near the onset time of a visual target reduce latencies, more for early beeps and less for late beeps, however, this modulation is far weaker than for perceptual temporal judgments. Here we tested our previous assumption that beeps shift the perceived timing of target onset and result in two competing effects on saccade latencies: a multisensory modulation in line with the expected perceptual effect and an illusory gap/overlap effect, resulting from target appearance being perceived later/closer in time than fixation offset and shortening/lengthening saccade latencies. Gap/overlap effects involve an oculomotor component associated with neuronal activity in the superior colliculus (SC), a multisensory subcortical structure devoted to sensory-motor transformation. We therefore predicted that the interfering illusory gap/overlap effect would be weaker for manual responses, which involve distinct multisensory areas. In three experiments we manipulated the delay between target onset and an irrelevant auditory beep (stimulus onset asynchrony; SOA) and between target onset and fixation offset (real gap/overlap). Targets appeared left/right of fixation and participants were instructed to make quick saccades or button presses towards the targets. Adding a real overlap/gap (50% of SOA) compensated for the illusory gap/overlap by increasing the beep-related modulation of saccade latencies across the entire SOA range, whereas it barely affected manual responses. However, although auditory and gap/overlap effects modulated saccade latencies in similar ways, these were additive and could saturate, suggesting that they reflect independent mechanisms. Therefore, multisensory temporal binding affects perception and oculomotor control differently, likely due to the implication of the SC in saccade programming and multisensory integration.

Funder

French government

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accelerating Saccadic Response through Spatial and Temporal Cross-Modal Misalignments;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3