Quantification of the calcium signaling deficit in muscles devoid of triadin

Author:

Manno CarloORCID,Tammineni Eshwar,Figueroa Lourdes,Marty Isabelle,Ríos Eduardo

Abstract

Triadin, a protein of the sarcoplasmic reticulum (SR) of striated muscles, anchors the calcium-storing protein calsequestrin to calcium release RyR channels at the junction with t-tubules, and modulates these channels by conformational effects. Triadin ablation induces structural SR changes and alters the expression of other proteins. Here we quantify alterations of calcium signaling in single skeletal myofibers of constitutive triadin-null mice. We find higher resting cytosolic and lower SR-luminal [Ca2+], 40% lower calsequestrin expression, and more CaV1.1, RyR1 and SERCA1. Despite the increased CaV1.1, the mobile intramembrane charge was reduced by ~20% in Triadin-null fibers. The initial peak of calcium release flux by pulse depolarization was minimally altered in the null fibers (revealing an increase in peak calcium permeability). The “hump” phase that followed, attributable to calcium detaching from calsequestrin, was 25% lower, a smaller change than expected from the reduced calsequestrin content and calcium saturation. The exponential decay rate of calcium transients was 25% higher, consistent with the higher SERCA1 content. Recovery of calcium flux after a depleting depolarization was faster in triadin-null myofibers, consistent with the increased uptake rate and lower SR calsequestrin content. In sum, the triadin knockout determines an increased RyR1 channel openness, which depletes the SR, a substantial loss of calsequestrin and gains in other couplon proteins. Powerful functional compensations ensue: activation of SOCE that increases [Ca2+]cyto; increased SERCA1 activity, which limits the decrease in [Ca2+]SR and a restoration of SR calcium storage of unknown substrate. Together, they effectively limit the functional loss in skeletal muscles.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3