Genome-wide analysis of methylation in rat fetal heart under hyperglycemia by methylation-dependent restriction site–associated DNA sequencing

Author:

Meng Rui,Song Junxian,Guan Lina,Li Qian,Shi Cuige,Su Dongmei,Ma XuORCID

Abstract

Diabetes mellitus causes an increased incidence of congenital heart malformations. However, the pathogenesis and potential epigenetic mechanism involved in this process are unclear. In this study, we used MethylRAD sequencing to compare changes in methylation levels in the genomic landscapes in the fetal heart in a rat model of hyperglycemia. Our results showed that methylation of CCGG/CCNGG sites were mostly enriched in intergenic regions, followed by intron, exon, upstream and the 5′ and 3′ untranslated regions. qRT-PCR results confirmed the MethylRAD sequencing findings, suggesting that abnormal CCGG/CCNGG methylation in the upstream region regulated gene expression. The differential methylation genes (DMGs) based on the CCGG and CCNGG sites in the upstream region were examined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Gene Ontology indicated that the CCGG-based DMGs involved in biological process and function were mainly related to transcription and co-SMAD binding. The CCNGG-based DMGs were mainly related to transcription and cytokine-mediated signaling pathways. Kyoto Encyclopedia of Genes and Genomes analysis indicated that CCGG-based DMGs were mainly involved in the Wnt signaling and TGF-β signaling pathways. CCNGG-based DMGs were involved in the TNF signaling and apoptosis pathways. These genes may play dominant roles in cardiomyocyte apoptosis and heart disease and require further study. These genes may also serve as potential molecular targets or diagnostic biomarkers for heart malformations under hyperglycemia.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

the Non-profit Central Research Institute Fund of National Research Institute For Family Planning

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3