Abstract
The HEAT domains are a family of helical hairpin repeat domains, composed of four or more hairpins. HEAT is derived from the names of four family members: huntingtin, eukaryotic translation elongation factor 3 (eEF3), protein phosphatase 2 regulatory A subunit (PP2A), and mechanistic target of rapamycin (mTOR). HEAT domain-containing proteins play roles in a wide range of cellular processes, such as protein synthesis, nuclear transport and metabolism, and cell signaling. The PCI domains are a related group of helical hairpin domains, with a “winged-helix” (WH) subdomain at their C-terminus, which is responsible for multi-subunit complex formation with other PCI domains. The name is derived from the complexes, where these domains are found: the 26S Proteasome “lid” regulatory subcomplex, the COP9 signalosome (CSN), and eukaryotic translation initiation factor 3 (eIF3). We noted that in structure similarity searches using HEAT domains, sometimes PCI domains appeared in the search results ahead of other HEAT domains, which indicated that the PCI domains could be members of the HEAT domain family, and not a related but separate group, as currently thought. Here, we report extensive structure similarity analysis of HEAT and PCI domains, both within and between the two groups of proteins. We present evidence that the PCI domains as a group have greater structural similarity with individual groups of HEAT domains than some of the HEAT domain groups have among each other. Therefore, our results indicate that the PCI domains have evolved from a HEAT domain that acquired a WH subdomain. The WH subdomain in turn mediated self-association into a multi-subunit complex, which eventually evolved into the common ancestor of the Proteasome lid/CSN/eIF3.
Funder
National Institute of General Medical Sciences
Publisher
Public Library of Science (PLoS)
Reference47 articles.
1. Protein repeats: structures, functions, and evolution;MA Andrade;J Struct Biol,2001
2. Comparison of ARM and HEAT protein repeats;MA Andrade;J Mol Biol,2001
3. Topological characteristics of helical repeat proteins;MR Groves;Curr Opin Struct Biol,1999
4. HEAT repeats—versatile arrays of amphiphilic helices working in crowded environments?;SH Yoshimura;J Cell Sci,2016
5. HEAT repeats in the Huntington’s disease protein;MA Andrade;Nat Genet,1995
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献