Intensive grazing alters the diversity, composition and structure of plant-pollinator interaction networks in Central European grasslands

Author:

Rakosy DemetraORCID,Motivans Elena,Ştefan Valentin,Nowak Arkadiusz,Świerszcz SebastianORCID,Feldmann Reinart,Kühn Elisabeth,Geppert Costanza,Venkataraman Neeraja,Sobieraj-Betlińska AnnaORCID,Grossmann Anita,Rojek Wiktoria,Pochrząst Katarzyna,Cielniak Magdalena,Gathof Anika Kirstin,Baumann KevinORCID,Knight Tiffany Marie

Abstract

Complex socio-economic, political and demographic factors have driven the increased conversion of Europe’s semi-natural grasslands to intensive pastures. This trend is particularly strong in some of the most biodiverse regions of the continent, such as Central and Eastern Europe. Intensive grazing is known to decrease species diversity and alter the composition of plant and insect communities. Comparatively little is known, however, about how intensive grazing influences plant functional traits related to pollination and the structure of plant-pollinator interactions. In traditional hay meadows and intensive pastures in Central Europe, we contrasted the taxonomic and functional group diversity and composition, the structure of plant-pollinator interactions and the roles of individual species in networks. We found mostly lower taxonomic and functional diversity of plants and insects in intensive pastures, as well as strong compositional differences among the two grassland management types. Intensive pastures were dominated by a single plant with a specialized flower structure that is only accessible to a few pollinator groups. As a result, intensive pastures have lower diversity and specificity of interactions, higher amount of resource overlap, more uniform interaction strength and lower network modularity. These findings stand in contrast to studies in which plants with more generalized flower traits dominated pastures. Our results thus highlight the importance of the functional traits of dominant species in mediating the consequences of intensive pasture management on plant-pollinator networks. These findings could further contribute to strategies aimed at mitigating the impact of intensive grazing on plant and pollinator communities.

Funder

Helmholtz Recruitment Initiative

Deutsche Forschungsgesellschaft

National Science Centre, Poland

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3