From work stress to disease: A computational model

Author:

Benthem de Grave RemcoORCID,Hasselman Fred,Bijleveld ErikORCID

Abstract

In modern society, work stress is highly prevalent. Problematically, work stress can cause disease. To help understand the causal relationship between work stress and disease, we present a computational model of this relationship. That is, drawing from allostatic load theory, we captured the link between work stress and disease in a set of mathematical formulas. With simulation studies, we then examined our model’s ability to reproduce key findings from previous empirical research. Specifically, results from Study 1 suggested that our model could accurately reproduce established findings on daily fluctuations in cortisol levels (both on the group level and the individual level). Results from Study 2 suggested that our model could accurately reproduce established findings on the relationship between work stress and cardiovascular disease. Finally, results from Study 3 yielded new predictions about the relationship between workweek configurations (i.e., how working hours are distributed over days) and the subsequent development of disease. Together, our studies suggest a new, computational approach to studying the causal link between work stress and disease. We suggest that this approach is fruitful, as it aids the development of falsifiable theory, and as it opens up new ways of generating predictions about why and when work stress is (un)healthy.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference92 articles.

1. The cost of work-related stress to society: A systematic review;J Hassard;Journal of Occupational Health Psychology,2018

2. Why model?;J Epstein;Journal of Artificial Societies and Social Simulation,2008

3. Computational models and organizational psychology: Opportunities abound;JM Weinhardt;Organizational Psychology Review,2012

4. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning;T Yarkoni;Perspectives on Psychological Science,2017

5. Stress, adaptation, and disease. Allostasis and allostatic load;BS McEwen;Annals of the New York Academy of Sciences,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3