Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks

Author:

Anjum Zeeshan MemonORCID,Said Dalila Mat,Hassan Mohammad Yusri,Leghari Zohaib Hussain,Sahar Gul

Abstract

The installation of Distributed Generation (DG) units in the Radial Distribution Networks (RDNs) has significant potential to minimize active power losses in distribution networks. However, inaccurate size(s) and location(s) of DG units increase power losses and associated Annual Financial Losses (AFL). A comprehensive review of the literature reveals that existing analytical, metaheuristic and hybrid algorithms employed on DG allocation problems trap in local or global optima resulting in higher power losses. To address these limitations, this article develops a parallel hybrid Arithmetic Optimization Algorithm and Salp Swarm Algorithm (AOASSA) for the optimal sizing and placement of DGs in the RDNs. The proposed parallel hybrid AOASSA enables the mutual benefit of both algorithms, i.e., the exploration capability of the SSA and the exploitation capability of the AOA. The performance of the proposed algorithm has been analyzed against the hybrid Arithmetic Optimization Algorithm Particle Swarm Optimization (AOAPSO), Salp Swarm Algorithm Particle Swarm Optimization (SSAPSO), standard AOA, SSA, and Particle Swarm Optimization (PSO) algorithms. The results obtained reveals that the proposed algorithm produces quality solutions and minimum power losses in RDNs. The Power Loss Reduction (PLR) obtained with the proposed algorithm has also been validated against recent analytical, metaheuristic and hybrid optimization algorithms with the help of three cases based on the number of DG units allocated. Using the proposed algorithm, the PLR and associated AFL reduction of the 33-bus and 69-bus RDNs improved to 65.51% and 69.14%, respectively. This study will help the local distribution companies to minimize power losses and associated AFL in the long-term planning paradigm.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference67 articles.

1. Multiple DGS for reducing total power losses in radial distribution systems using hybrid WOA-SSA algorithm.;KMS Alzaidi;Int J Photoenergy,2019

2. Optimal siting and sizing of distributed generation in radial distribution system using a novel student psychology-based optimization algorithm;K Balu;Neural Comput Appl,2021

3. A mixed-integer convex model for the optimal placement and sizing of distributed generators in power distribution networks.;W Gil-González;Appl Sci,2021

4. Distributed generation technologies, definitions and benefits.;W El-Khattam;Electr Power Syst Res,2004

5. Distributed generation: A definition.;T Ackermann;Electr Power Syst Res,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3