Signed random walk diffusion for effective representation learning in signed graphs

Author:

Jung Jinhong,Yoo Jaemin,Kang U.ORCID

Abstract

How can we model node representations to accurately infer the signs of missing edges in a signed social graph? Signed social graphs have attracted considerable attention to model trust relationships between people. Various representation learning methods such as network embedding and graph convolutional network (GCN) have been proposed to analyze signed graphs. However, existing network embedding models are not end-to-end for a specific task, and GCN-based models exhibit a performance degradation issue when their depth increases. In this paper, we proposeSignedDiffusionNetwork(SidNet), a novel graph neural network that achieves end-to-end node representation learning for link sign prediction in signed social graphs. We propose a new random walk based feature aggregation, which is specially designed for signed graphs, so that SidNeteffectively diffuses hidden node features and uses more information from neighboring nodes. Through extensive experiments, we show that SidNetsignificantly outperforms state-of-the-art models in terms of link sign prediction accuracy.

Funder

ICT R&D program of MSIT/IITP

Artificial Intelligence Graduate School Program, Seoul National University

Artificial Intelligence Innovation Hub, Artificial Intelligence Institute, Seoul National University

Artificial Intelligence Innovation Hub, Jeonbuk National University

Institute of Engineering Research and ICT at Seoul National University

Research funds for newly appointed professors of Jeonbuk National University in 2020

National Research Foundation of Korea(NRF) grant funded by the Korea governmen

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3