Characterizing polarization in online vaccine discourse—A large-scale study

Author:

Mønsted BjarkeORCID,Lehmann Sune

Abstract

Vaccine hesitancy is currently recognized by the WHO as a major threat to global health. Recently, especially during the COVID-19 pandemic, there has been a growing interest in the role of social media in the propagation of false information and fringe narratives regarding vaccination. Using a sample of approximately 60 billion tweets, we conduct a large-scale analysis of the vaccine discourse on Twitter. We use methods from deep learning and transfer learning to estimate the vaccine sentiments expressed in tweets, then categorize individual-level user attitude towards vaccines. Drawing on an interaction graph representing mutual interactions between users, we analyze the interplay between vaccine stances, interaction network, and the information sources shared by users in vaccine-related contexts. We find that strongly anti-vaccine users frequently share content from sources of a commercial nature; typically sources which sell alternative health products for profit. An interesting aspect of this finding is that concerns regarding commercial conflicts of interests are often cited as one of the major factors in vaccine hesitancy. Further, we show that the debate is highly polarized, in the sense that users with similar stances on vaccination interact preferentially with one another. Extending this insight, we provide evidence of an epistemic echo chamber effect, where users are exposed to highly dissimilar sources of vaccine information, depending the vaccination stance of their contacts. Our findings highlight the importance of understanding and addressing vaccine mis- and dis-information in the context in which they are disseminated in social networks.

Funder

Danish Council for Independent Research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference72 articles.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3