Warfarin sensitivity is associated with increased hospital mortality in critically Ill patients

Author:

Ma ZhiyuanORCID,Wang Ping,Mahesh Milan,Elmi Cyrus P.,Atashpanjeh Saeid,Khalighi Bahar,Cheng Gang,Krishnamurthy Mahesh,Khalighi Koroush

Abstract

Background Warfarin is a widely used anticoagulant with a narrow therapeutic index and large interpatient variability in the therapeutic dose. Warfarin sensitivity has been reported to be associated with increased incidence of international normalized ratio (INR) > 5. However, whether warfarin sensitivity is a risk factor for adverse outcomes in critically ill patients remains unknown. In the present study, we aimed to evaluate the utility of different machine learning algorithms for the prediction of warfarin sensitivity and to determine the impact of warfarin sensitivity on outcomes in critically ill patients. Methods Nine different machine learning algorithms for the prediction of warfarin sensitivity were tested in the International Warfarin Pharmacogenetic Consortium cohort and Easton cohort. Furthermore, a total of 7,647 critically ill patients was analyzed for warfarin sensitivity on in-hospital mortality by multivariable regression. Covariates that potentially confound the association were further adjusted using propensity score matching or inverse probability of treatment weighting. Results We found that logistic regression (AUC = 0.879, 95% CI: 0.834–0.924) was indistinguishable from support vector machine with a linear kernel, neural network, AdaBoost and light gradient boosting trees, and significantly outperformed all the other machine learning algorithms. Furthermore, we found that warfarin sensitivity predicted by the logistic regression model was significantly associated with worse in-hospital mortality in critically ill patients with an odds ratio (OR) of 1.33 (95% CI, 1.01–1.77). Conclusions Our data suggest that the logistic regression model is the best model for the prediction of warfarin sensitivity clinically and that warfarin sensitivity is likely to be a risk factor for adverse outcomes in critically ill patients.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3