Additive genetic effect of GCKR, G6PC2, and SLC30A8 variants on fasting glucose levels and risk of type 2 diabetes

Author:

Chen GuanjieORCID,Shriner DanielORCID,Zhang Jianhua,Zhou Jie,Adikaram Poorni,Doumatey Ayo P.,Bentley Amy R.,Adeyemo Adebowale,Rotimi Charles N.

Abstract

Impaired glucose tolerance is a major risk factor for type 2 diabetes (T2D) and several cardiometabolic disorders. To identify genetic loci underlying fasting glucose levels, we conducted an analysis of 9,232 individuals of European ancestry who at enrollment were either nondiabetic or had untreated type 2 diabetes. Multivariable linear mixed models were used to test for associations between fasting glucose and 7.9 million SNPs, with adjustment for age, body mass index (BMI), sex, significant principal components of the genotypes, and cryptic relatedness. Three previously discovered loci were genome-wide significant, with the lead SNPs being rs1260326, a missense variant in GCKR (p = 1.06×10−8); rs560887, an intronic variant in G6PC2 (p = 3.39×10−11); and rs13266634, a missense variant in SLC30A8 (p = 4.28×10−10). Fine mapping, genome-wide conditional analysis, and functional annotation indicated that the three loci were independently associated with fasting glucose. Each copy of an alternate allele at any of these three SNPs was associated with a reduction of 0.012 mmol/L in fasting glucose levels (p = 8.0×10−28), and this association was replicated in trans-ethnic analysis of 14,303 individuals (p = 2.2×10−16). The three SNPs were jointly associated with significantly reduced T2D risk, with an odds ratio (95% CI) of 0.93 (0.88, 0.98) per protective allele. Our findings implicate additive effects across pathophysiological pathways involved in type 2 diabetes, including glycolysis, gluconeogenesis, and insulin secretion. Since none of the individuals homozygous for the alternate alleles at all three loci has T2D, it might be possible to use a genetic predictor of fasting glucose levels to identify individuals at low vs. high risk of developing type 2 diabetes.

Funder

national institutes of health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3