Behavioral responses of blue-winged teal and northern shoveler to unmanned aerial vehicle surveys

Author:

Ryckman Mason D.,Kemink KaylanORCID,Felege Christopher J.ORCID,Darby Brian,Vandeberg Gregory S.ORCID,Ellis-Felege Susan N.ORCID

Abstract

Unmanned aerial vehicles (UAVs) have become a popular wildlife survey tool. Most research has focused on detecting wildlife using UAVs with less known about behavioral responses. We compared the behavioral responses of breeding blue-winged teal (Spatula discors) (n = 151) and northern shovelers (Spatula clypeata) (n = 46) on wetlands flown over with a rotary DJI Matrice 200 quadcopter and control wetlands without flights. Using a GoPro camera affixed to a spotting scope, we conducted focal individual surveys and recorded duck behaviors for 30 minutes before, during, and 30 minutes after UAV flights to determine if ducks flushed or changed in specific activities. We also conducted scan surveys during flights to examine flushing and movement on the entire wetland. Between 24 April and 27 May 2020, we conducted 42 paired (control and flown) surveys. Both teal and shovelers increased proportion of time engaged in overhead vigilance on flown wetlands from pre-flight to during flight (0.008 to 0.020 and 0.006 to 0.032 of observation time, respectively). Both species left the wetland more frequently during flights than ducks on control wetlands. Despite similarities between species, we observed marked differences in time each species spent on active (e.g., feeding, courtship, swimming), resting, and vigilant behaviors during flights. Overall, teal became less active during flights (0.897 to 0.834 of time) while shovelers became more active during this period (0.724 to 0.906 of time). Based upon scan surveys, ducks flushed in 38.1% of surveys while control wetlands only had a single (2.4%) flush during the flight time. We found launch distance was the most important predictor of whether ducks swam for cover or away from the UAV which could result in inaccurate counts. Ducks appear aware of UAVs during flights, but minimal behavioral shifts suggest negative fitness consequences are unlikely.

Funder

Ducks Unlimited, Inc

College of Arts and Sciences, University of North Dakota

Department of Biology, University of North Dakota

North Dakota Department of Commerce

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference32 articles.

1. Job-related mortality of wildlife workers in the United States, 1937–2000;DB Sasse;Wildlife Society Bulletin,2003

2. An Assessment of Small Unmanned Aerial Vehicles for Wildlife Research;Pearlstine LG George Pierce Jones;Wildlife Society Bulletin,2006

3. Low‐budget ready‐to‐fly unmanned aerial vehicles: An effective tool for evaluating the nesting status of canopy‐breeding bird species;MH Weissensteiner;Journal of avian biology,2015

4. Lightweight unmanned aerial vehicles will revolutionize spatial ecology;K Anderson;Frontiers in Ecology and the Environment,2013

5. Jones GP. The feasibility of using small unmanned aerial vehicles for wildlife research [PhD Thesis]. University of Florida USA; 2003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3