The effects of mycobacterial RmlA perturbation on cellular dNTP pool, cell morphology, and replication stress in Mycobacterium smegmatis

Author:

Hirmondó Rita,Horváth Ármin,Molnár Dániel,Török GyörgyORCID,Nguyen Liem,Tóth JuditORCID

Abstract

The concerted action of DNA replication and cell division has been extensively investigated in eukaryotes. Well demarcated checkpoints have been identified in the cell cycle, which provides the correct DNA stoichiometry and appropriate growth in the progeny. In bacteria, which grow faster and less concerted than eukaryotes, the linkages between cell elongation and DNA synthesis are unclear. dTTP, one of the canonical nucleotide-building blocks of DNA, is also used for cell wall biosynthesis in mycobacteria. We hypothesize that the interconnection between DNA and cell wall biosynthesis through dTTP may require synchronization of these processes by regulating dTTP availability. We investigated growth, morphology, cellular dNTP pool, and possible signs of stress in Mycobacterium smegmatis upon perturbation of rhamnose biosynthesis by the overexpression of RmlA. RmlA is a cell wall synthetic enzyme that uses dTTP as the precursor for cross-linking the peptidoglycan with the arabinogalactan layers by a phosphodiester bond in the mycobacterial cell wall. We found that RmlA overexpression results in changes in cell morphology, causing cell elongation and disruption of the cylindrical cell shape. We also found that the cellular dTTP pool is reduced by half in RmlA overexpressing cells and that this reduced dTTP availability does not restrict cell growth. We observed 2-6-fold increases in the gene expression of replication and cell wall biosynthesis stress factors upon RmlA overexpression. Using super-resolution microscopy, we found that RmlA, acting to crosslink the nascent layers of the cell wall, localizes throughout the whole cell length in a helical pattern in addition to the cellular pole.

Funder

Hungarian Scientific Research Fund

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference44 articles.

1. Bacterial Growth and Cell Division: a Mycobacterial Perspective;EC Hett;Microbiol Mol Biol Rev,2008

2. Mechanisms of drug-induced tolerance in mycobacterium tuberculosis;SN Goossens;Clin Microbiol Rev,2021

3. GLOBAL TUBERCULOSIS REPORT 2020. 2020.

4. Expanding the anti-TB arsenal;V Mizrahi;Science. American Association for the Advancement of Science,2019

5. Assembly of the Mycobacterial Cell Wall;M Jankute;Annu Rev Microbiol,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3