A real-time PCR method to genotype mutant mouse models with altered affinity for cardiotonic steroids on the Na,K-ATPase

Author:

Chomczynski Peter W.ORCID,Vires Kianna M.ORCID,Rymaszewski MichalORCID,Heiny Judith A.

Abstract

The highly conserved, cardiotonic steroid binding site (also termed ouabain binding site) on the primary α subunit of Na,K-ATPase plays a receptor signaling role in a range of vital cell processes and is a therapeutic target for human disease. Mouse lines with altered affinity for cardiotonic steroids on the α1 or α2 subunit isoform of Na,K-ATPase, without any change in pump activity, were developed by the late Jerry B Lingrel and are a valuable tool for studying its physiological roles and drug actions. In one model, the normally ouabain resistant α1 isoform was rendered sensitive to ouabain binding. In a second model, the normally sensitive α2 isoform was rendered resistant to ouabain binding. Additional useful models are obtained by mating these mice. To further advance their use, we developed a rapid, real-time PCR method that detects mutant alleles using specific primers and fluorescent probes. PCR is performed in fast mode with up to 15 samples processed in 40 min. The method was validated by Sanger sequencing using mice of known genotype, and by comparing results with a previous two-step method that used PCR amplification followed by gel electrophoresis. In addition, we clarified inconsistencies in published sequences, updated numbering to current reference sequences, and confirmed the continued presence of the mutations in the colony. It is expected that a wider availability of these models and a more efficient genotyping protocol will advance studies of the Na,K-ATPase and its cardiotonic steroid receptor.

Funder

Molecular Research Center, Inc., Cincinnati, OH

University of Cincinnati Physiology Research Fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3