Protein-protein interactions enhance the thermal resilience of SpyRing-cyclized enzymes: A molecular dynamic simulation study

Author:

Gao Qi,Ming DanglingORCID

Abstract

Recently a technique based on the interaction between adhesion proteins extracted from Streptococcus pyogenes, known as SpyRing, has been widely used to improve the thermal resilience of enzymes, the assembly of biostructures, cancer cell recognition and other fields. It was believed that the covalent cyclization of protein skeleton caused by SpyRing reduces the conformational entropy of biological structure and improves its rigidity, thus improving the thermal resilience of the target enzyme. However, the effects of SpyTag/ SpyCatcher interaction with this enzyme are poorly understood, and their regulation of enzyme properties remains unclear. Here, for simplicity, we took the single domain enzyme lichenase from Bacillus subtilis 168 as an example, studied the interface interactions in the SpyRing by molecular dynamics simulations, and examined the effects of the changes of electrostatic interaction and van der Waals interaction on the thermal resilience of target enzyme. The simulations showed that the interface between SpyTag/SpyCatcher and the target enzyme is different from that found by geometric matching method and highlighted key mutations at the interface that might have effect on the thermal resilience of the enzyme. Our calculations highlighted interfacial interactions between enzyme and SpyTag/SpyCatcher, which might be useful in rational designs of the SpyRing.

Funder

the National Key Research and Development Program of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3