Automatic Cyclic Alternating Pattern (CAP) analysis: Local and multi-trace approaches

Author:

Tramonti Fantozzi Maria PaolaORCID,Faraguna Ugo,Ugon Adrien,Ciuti Gastone,Pinna Andrea

Abstract

The Cyclic Alternating Pattern (CAP) is composed of cycles of two different electroencephalographic features: an activation A-phase followed by a B-phase representing the background activity. CAP is considered a physiological marker of sleep instability. Despite its informative nature, the clinical applications remain limited as CAP analysis is a time-consuming activity. In order to overcome this limit, several automatic detection methods were recently developed. In this paper, two new dimensions were investigated in the attempt to optimize novel, efficient and automatic detection algorithms: 1) many electroencephalographic leads were compared to identify the best local performance, and 2) the global contribution of the concurrent detection across several derivations to CAP identification. The developed algorithms were tested on 41 polysomnographic recordings from normal (n = 8) and pathological (n = 33) subjects. In comparison with the visual CAP analysis as the gold standard, the performance of each algorithm was evaluated. Locally, the detection on the F4-C4 derivation showed the best performance in comparison with all other leads, providing practical suggestions of electrode montage when a lean and minimally invasive approach is preferable. A further improvement in the detection was achieved by a multi-trace method, the Global Analysis—Common Events, to be applied when several recording derivations are available. Moreover, CAP time and CAP rate obtained with these algorithms positively correlated with the ones identified by the scorer. These preliminary findings support efficient automated ways for the evaluation of the sleep instability, generalizable to both normal and pathological subjects affected by different sleep disorders.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3