Spatiotemporal mapping of major trauma in Victoria, Australia

Author:

Beck BenORCID,Zammit-Mangion Andrew,Fry Richard,Smith Karen,Gabbe BelindaORCID

Abstract

Background Spatiotemporal modelling techniques allow one to predict injury across time and space. However, such methods have been underutilised in injury studies. This study demonstrates the use of statistical spatiotemporal modelling in identifying areas of significantly high injury risk, and areas witnessing significantly increasing risk over time. Methods We performed a retrospective review of hospitalised major trauma patients from the Victorian State Trauma Registry, Australia, between 2007 and 2019. Geographical locations of injury events were mapped to the 79 local government areas (LGAs) in the state. We employed Bayesian spatiotemporal models to quantify spatial and temporal patterns, and analysed the results across a range of geographical remoteness and socioeconomic levels. Results There were 31,317 major trauma patients included. For major trauma overall, we observed substantial spatial variation in injury incidence and a significant 2.1% increase in injury incidence per year. Area-specific risk of injury by motor vehicle collision was higher in regional areas relative to metropolitan areas, while risk of injury by low fall was higher in metropolitan areas. Significant temporal increases were observed in injury by low fall, and the greatest increases were observed in the most disadvantaged LGAs. Conclusions These findings can be used to inform injury prevention initiatives, which could be designed to target areas with relatively high injury risk and with significantly increasing injury risk over time. Our finding that the greatest year-on-year increases in injury incidence were observed in the most disadvantaged areas highlights the need for a greater emphasis on reducing inequities in injury.

Funder

Transport Accident Commission

Department of Health, State Government of Victoria

Australian Research Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3