Dynamic distribution and prevention of spontaneous combustion of coal in gob-side entry retaining goaf

Author:

Hu DongjieORCID,Li Zongxiang

Abstract

The 11101 working face of Qipanjing Mine was taken as the research object to explore the dynamic change law of the spontaneous combustion of the remaining coal in the gob-side entry retaining goaf area. A sealed oxygen consumption experiment was conducted to determine the (critical) oxygen volume fraction in the suffocation zone and continuous oxygen consumption rate of coal samples. The parameters of the working face were measured on site, and the air volume fraction in the goaf was monitored using a beam tube. Considering upward ventilation and the effect of gravity, a UDF control program for the falling medium in the gob-side entry retaining goaf was written. Based on the experimental results, a control program for the continuous oxygen consumption rate of the remnant coal was compiled, the dynamic distribution of the flow field in the gob-side entry retaining goaf was simulated with different advancing positions and air leakage at the working face, and a prediction model for the spontaneous combustion danger area was established. Finally, fire prevention measures via grouting in the return air lane side and nitrogen injection in the retaining lane side were put forward. The results showed that with the variation in the advancing position of the working face or in the air leakage of the air intake lane, the range of the natural hazardous area of the gob-side entry retaining goaf presents a distribution with a power function SF = xn+b (0 < n < 1). The theoretically proposed fire-fighting measures can effectively reduce the risk of spontaneous combustion of coal.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference23 articles.

1. Pan ES, Chairman (Dean) and Party Secretary of State Grid Economic and Technological Research Institute Co., Ltd. Supporting the Construction of "Three Types and Two Networks" and Promoting Energy Transformation and Development [N]. State Grid News, 2019-12-05 (003).

2. Deepening Supply-Side Structural Reforms in Coal Power with a Power Market;JH Yuan;Emerging Markets Finance and Trade,2021

3. A New Gob-Side Entry Layout Method for Two-Entry Longwall Systems;W Rui;Energies,2018

4. Study on spontaneous combustion law in gob-out area of gob-side entry retaining with roof cutting;YB Hao;Shanxi Coking Coal Technology,2021

5. Study on the dangerous area of spontaneous combustion in goaf of "Y" ventilation working face;X. An;Shanxi Coking Coal Technology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3