Liquidity effects on oil volatility forecasting: From fintech perspective

Author:

Ding Shusheng,Cui TianxiangORCID,Zhang Yongmin,Li Jiawei

Abstract

Fin-tech is an emerging field, inspiring revolutionary innovations in the financial field. It may initiate the evolutionary episode of the financial research, where volatility forecasting is a crucial topic in finance. For forecasting volatility, GARCH model is a prevailing model, however, further improvement of the GARCH model is still challenging. In this paper, we demonstrate how Fintech can play a part in volatility forecasting by employing a metaheuristic procedure called Genetic Programming. On the basis, we are able to develop a new volatility forecasting model, which can beat GARCH family models (including GARCH, IGARCH and TGARCH models) in a significant way. Since genetic programming is an evolutionary algorithm based on the principles of natural selection, this innovative work will be a breakthrough point in the financial area. The innovation of this paper demonstrates how GP technology can be applied in the financial field, attempting to explore the volatility forecasting area from the combination of new technology and finance, known as fintech. More importantly, when the formula of volatility forecasting is unknown as we introduce a new factor, namely, the liquidity factor, we unveil that how GP method can be helpful in determining the specific volatility forecasting model format. We thereby exhibit the liquidity effects on volatility forecasting filed from the fintech perspective.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference57 articles.

1. Fintech, regulatory arbitrage, and the rise of shadow banks;G Buchak;Journal of Financial Economics,2018

2. How valuable is FinTech innovation?;MA Chen;The Review of Financial Studies,2019

3. Multiperiod hedging in the presence of stochastic volatility;D Lien;International Review of Financial Analysis,2001

4. Correcting the errors: Volatility forecast evaluation using high-frequency data and realized volatilities;TG Andersen;Econometrica,2005

5. Modeling interest rate volatility: A Realized GARCH approach;S Tian;Journal of Banking & Finance,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3